
IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021 927

IoT-Praetor: Undesired Behaviors Detection
for IoT Devices

Juan Wang , Member, IEEE, Shirong Hao , Ru Wen , Boxian Zhang, Liqiang Zhang,

Hongxin Hu , Member, IEEE, and Rongxing Lu , Senior Member, IEEE

Abstract—Due to insecure design and configuration, the
Internet-of-Things (IoT) devices are vulnerable to various secu-
rity issues. In most attacks against IoT, e.g., Mirai, attackers
control devices to perform malicious behaviors that are not
expected by owners and administrators. Therefore, how to
effectively detect malicious behaviors is crucial to protect the
security of IoT devices. Different from powerful PCs and servers,
resource-constrained IoT devices are generally used to execute
the specific function and their behaviors are limited. Based on
this observation, we propose IoT-Praetor, an undesired behavior
security detection system for IoT devices. In IoT-Praetor, a new
device usage description (DUD) model is proposed to construct an
IoT device behavior specification, including communication and
interaction behaviors. Furthermore, automatic behavior extrac-
tion approaches are presented. We also design a behavior rule
engine to detect device behaviors in real time. To evaluate the
effectiveness of IoT-Praetor, we implemented our methods on
Samsung SmartThings and performed a security test. The evalu-
ation results show that the successful detection rate of malicious
interaction behavior is 94.5% on average, and the detection rate
of malicious communication behavior is above 98%, and system
running time delay is only in millisecond level.

Index Terms—Deep learning, device identification, Internet of
Things (IoT), security.

I. INTRODUCTION

THE Internet-of-Things (IoT) technology has received
considerable attention in various applications, including

smart healthcare, smart city, smart building, and smart home.
Among these applications, smart home [1] is one of the

Manuscript received January 9, 2020; revised March 21, 2020 and June
9, 2020; accepted June 30, 2020. Date of publication July 17, 2020; date
of current version January 7, 2021. This work was supported in part by the
National Natural Science Foundation of China under Grant 61872430; and
in part by the National Basic Research Program of China (973 Program)
under Grant 2014CB340600. (Corresponding authors: Liqiang Zhang;
Boxian Zhang.)

Juan Wang and Liqiang Zhang are with the School of Cyber Science and
Engineering, Key Laboratory of Aerospace Information Security and Trust
Computing, and Ministry of Education, Wuhan University, Wuhan 430072,
China (e-mail: jwang@whu.edu.cn; zhanglq@whu.edu.cn).

Shirong Hao and Ru Wen were with the School of Cyber Science and
Engineering, Wuhan University, Wuhan 430072, China. They are now with
the OS Security Team, Alibaba Group, Hangzhou 311121, China, and also
with JD Retail, Beijing 100176, China (e-mail: shirong@whu.edu.cn; ruyulh@
whu.edu.cn).

Boxian Zhang is with the School of Cyber Science and Engineering, Wuhan
University, Wuhan 430072, China (e-mail: boxzhang@whu.edu.cn).

Hongxin Hu is with the School of Computing, Clemson University,
Clemson, SC 29634 USA (e-mail: hongxih@clemson.edu).

Rongxing Lu is with the Faculty of Computer Science, University of New
Brunswick, Fredericton, NB E3B 5A3, Canada (e-mail: rlu1@unb.ca).

Digital Object Identifier 10.1109/JIOT.2020.3010023

most popular ones. Essentially, smart home integrates var-
ious home IoT devices, and those home IoT devices can
communicate and share data with each other, enabling home-
owners to freely control them for a better convenience life.
Recently, some integrated platforms have emerged, includ-
ing Samsung SmartThings [2], Apple HomeKit [3], AWS
IoT [4], OpenHAB [5] (open source), and HomeAssistant
(open source) [6]. In addition to these control platforms, there
are also some third-party platforms such as IFTTT [7], which
can be linked to existing professional devices and communi-
cate with mainstream platforms to provide more customized
services.

Nevertheless, with the proliferation of IoT devices, security
issues [8], [9]–[14], such as DDoS attacks and privacy leaks
have become increasingly serious. A simple IoT system may
contain a large number of resource-constrained and low-power
IoT devices so that those traditional defense methods such
as anti-virus software, firewalls, etc., are difficult to install
directly in the devices to resist security threats. In addition,
a large number of legacy IoT devices have more or less
design and configure defects, such as hardcoded or weak pass-
words, and those flaws may not be fixed through firmware
update because manufacturers may stop the maintenance of
the devices. Hence, there are still lots of vulnerable devices
running on the market, which further makes the security of IoT
devices a major challenge. In most attacks against IoT devices,
e.g., Mirai [15], attackers control devices to perform malicious
behaviors that are not expected by owners and administra-
tors. Therefore, how to effectively detect malicious behaviors
becomes crucial to protect the security of IoT devices.

Existing research work on IoT security, such as
Homonit [16] and SmartAuth [17] that apply code analysis
and natural language processing (NLP) to infer whether
SmartApps follow the original design goal and execute
some unauthorized behaviors. FlowFence [18] ensures that
authorized users can access data legally by using information
flow tracking technology. However, these solutions mainly
focus on IoT applications security. Currently, CISCO has
proposed manufacturer usage description (MUD) [19] as a
standard specification to formulate behaviors of IoT devices.
However, it only includes some network access rules specified
by device manufacturers, resulting in that MUD can only
define very limited device communication behaviors.

In this article, we present IoT-Praetor, a new behavior-
based security detection system for IoT devices. In IoT-Praetor,
aiming at formally specifying the expected behaviors of

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8813-7842
https://orcid.org/0000-0002-3567-8255
https://orcid.org/0000-0002-0745-4051
https://orcid.org/0000-0001-8710-247X
https://orcid.org/0000-0001-5720-0941

928 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

an IoT device, we propose a new device usage descrip-
tion (DUD) model to construct the behavior specification of
IoT devices, including the desired communication behaviors
and interaction behaviors. In addition, we present automatic
approaches based on crawling and NLP to extract device
interaction behavior rules and expected communication behav-
ior rules. Furthermore, we design a behavior rule engine to
monitor and detect device behaviors in real time.

We implement IoT-Praetor based on Samsung SmartThings,
one of the most popular smart home platforms. To evalu-
ate the effectiveness of IoT-Praetor, we leveraged malicious
SmartApps and IFTTT Applets, Mirai Botnet attack for secu-
rity testing. The results indicate that the successful detection
rate of malicious interaction behavior is 94.5% on average
and the detection rate of malicious communication behavior
is above 98%, and system running time delay is in millisecond
level. As a result, our system can effectively detect and defend
against malicious behaviors of IoT devices while introducing
acceptable performance overhead.

Specifically, our main contributions can be summarized as
follows.

1) We propose a new DUD model to construct the IoT
device behavior specification. Our model can specify the
fine-grained interaction behaviors and communication
behaviors of the whole system over the entire lifecycle
for IoT devices.

2) We propose the approaches to automatically extract
device usage rules (DURs), which can extract device
interaction rules from SmartApps and IFTTT applets and
extract communication behavior rules including hidden
characteristics by analyzing the communication traffic
of incoming and outgoing devices.

3) We design and implement IoT-Praetor, a behavior secu-
rity detection system for IoT devices based on DUD,
and evaluate its effectiveness.

The remainder of this article is organized as follows.
Section II introduces the background and Section III discusses
the threat model. Section IV describes our system overview
and Section V describes the basic structure of DUD. The
automatic extraction of device behavior rules is described in
Section VI. We present the design of malicious behavior detec-
tion in Section VII. The implementation and evaluation of our
system are described in Section VIII. We discuss limitations
and future work in Section IX. Finally, we present related work
in Section X and conclude this article in Section XI.

II. BACKGROUND

A. Samsung SmartThings

As one of the most popular smart-home platforms [20],
SmartThings can integrate different devices from different
manufacturers through networks and cloud frameworks. In
addition, SmartThings can enable users to create personalized
rules based on their needs by the trigger–action programming
paradigm to implement complex operations across devices.
A SmartThings platform includes three major components:
1) SmartApps; 2) SmartThings cloud backend; and 3) a Smart
Hub.

SmartApps are the small Groovy programs running in the
Groovy sandbox environment provided by the SmartThings
cloud backend, which allows users to connect their devices
making their home more intelligent, such as “turn on the light
when the motion sensor is active”. SmartApps allow external
system API access to communicate with external Web services
such as sending an email, which is protected by OAuth2
authentication.

SmartThings cloud backend provides the Groovy sand-
box environment for SmartApps and Device Handler. Device
Handler is the virtual representation of a physical device,
which is responsible for communicating between the physical
devices and the SmartThings platform. Developers can create
Device Handler to integrate new devices into the SmartThings
system. The SmartApps subscribe to the events from Device
Handler and send the corresponding commands to the Device
Handler to control the device. The communication between the
SmartApps and Device Handler is based on capabilities that
are the core of the SmartThings architecture. Capabilities are
decomposed into a set of commands and attributes that devices
can support. Smart Hub is a hardware physical device.

The hub is responsible to send commands from the
SmartThings Apps to the connected devices and send the states
of devices to the user’s phone.

B. IFTTT Platform

Triggering operating platforms, such as IFTTT, Zapier [21],
and Apiant [22] allows users to connect services together and
implement “trigger–action” operations. The users of the IoT
platform can authorize their apps to automatically access the
services of trigger operating platforms. For example, using the
OAuth protocol, SmartThings users can authorize IFTTT to
communicate with their services. IFTTT (If-this-then-that) [7]
enables users to create automation rules (or recipes) across
multiple platforms according to the “trigger–action” paradigm.
It combines trigger and action to define various automation
tasks, providing a simplified way that users can easily follow.

In addition, IFTTT provides a powerful and simple Web UI
for mobile Applets development. By operating on the interface,
users can splice different IoT devices and services, create
new functions, and customize device behavior rules to achieve
intelligent devices easily. At the same time, IFTTT has storage
capabilities of rules, allowing users to reuse automated rules
provided by third-party developers or others.

In this article, we design and implement the IoT-Praetor
architecture and system based on Samsung SmartThings
and IFTTT platform. In IoT-Praetor, devices are managed
by Samsung SmartThings and can communicate with other
IFTTT platforms to use their services for intelligent functions.

C. MUD

MUD [19] is an IETF specification for defining behaviors
of IoT devices. In August 2016, the relevant draft of MUD
was submitted by Cisco. Recently, MUD has been officially
approved as an Internet Standard by IETF. MUD allows IoT
device manufacturers to define behaviors of IoT devices such
as communication patterns. The specification [23] can be used

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: IoT-PRAETOR: UNDESIRED BEHAVIORS DETECTION FOR IoT DEVICES 929

to find network threats for IoT devices because IoT devices
are expected to be special purpose and have a small number of
predictable traffic flows, which can be captured via relatively
simple policies.

MUD is provided in the form of a JSON file, which contains
an abstract device policy describing the normal communication
access rules of IoT devices. An MUD controller is used to
request and receive information from the MUD file server.
After an MUD file is received, the abstract information in
the MUD file is converted to the specific network element’s
configuration while maintaining and updating any necessary
mappings.

However, MUD only contains the network access rules spec-
ified by the manufacturer at the initial stage of device joining
the network, failed to consider adequately device interaction
rules according to the user’s requirements. This results in the
consequence that MUD can only define limited device com-
munication behaviors and miss other threats to IoT devices.
Additionally, the goal of MUD is specifying the device behav-
iors by manufacturers, hence it does not fully consider the
behaviors during devices running in a real environment. To
specify the fine-grained behaviors of the whole system over the
entire lifecycle for IoT devices, we propose a new IoT DUD
model, which consists of device interaction behaviors and
device communication behaviors. In our work, the DUD rules
can be automatically extracted from the device information,
SmartApps description, IFTTT Applets rules description, and
device communication packets. Then, a white list of device
behaviors is generated.

III. THREAT MODEL

We consider adversaries can compromise IoT devices
through malicious network communication, such as Mirai and
Hajime [24], which are the most notorious DDoS attacks to
IoT devices. Moreover, we assume SmartApps and IFTTT
Applets may be malicious or compromised so that adversaries
can exploit security design flaws in SmartThings’ capability
model and event subsystem of smart applications, causing that
SmartApps deviate from the original design goal. For example,
Fernandes et al. [25] summarized SmartApps misbehaviors
including: 1) over-privileged access, which is performed to
gain control of devices in a manner not specified by its
intended function and 2) event spoofing, which can be used
to perform fake events, causing SmartApps to activate some
actions mistakenly [16].

However, we assume that devices will not be attacked at
the initial stage of connecting to network because attackers
need to spend some time, resources, and energy to find out
vulnerabilities of devices, and how to exploit them before
carrying out attacks. Therefore, our IoT-Praetor system can
extract behaviors from clean data as a baseline.

Besides, we do not consider physical channel attacks, such
as the security of Bluetooth, ZigBee, and the side-channel
attacks to IoT devices [4], [26]–[28].

IV. DESIGN OVERVIEW OF IOT-PRAETOR

IoT devices are expected to be special purpose and have
a small number of predictable traffic flows, which can be

Fig. 1. System architecture of IoT-Praetor.

captured via relatively simple policies. Based on this obser-
vation, we propose IoT-Praetor, a system for automatically
extracting the behavior baseline of IoT devices and detect-
ing malicious behaviors. In IoT-Praetor, a new DUD model is
proposed. DUD can formulate the device behaviors from two
aspects: 1) device interaction behaviors and 2) network com-
munication behaviors. Furthermore, we design and implement
a behavioral security detection system of IoT devices by using
DUD and automatic behavior extraction and monitoring.

IoT-Praetor, the behavioral security detection system of IoT
devices, is designed and implemented based on the Samsung
SmartThings platform. The architecture of the system is shown
in Fig. 1, which includes an automatic rule extraction module,
a DUD generation module, and a behavior detection engine.
The automatic rule extraction module consists of an interaction
rule extraction module by analyzing SmartApps and IFTTT
Applets, and a communication rule extraction module by ana-
lyzing communication packets of devices. After extracting
rules by the automatic rule extraction module, the DUD gen-
eration module generates DURs from the extracted behavior
rules based on DUD. Then, the behavior detection engine cap-
tures the real-time behaviors of devices and uses DUR as a
baseline to detect the security of devices. In IoT-Praetor, the
real-time behaviors of devices are obtained from the Smart
Hub or using the SmartThings API to call device interfaces.

A. Automatic Rule Extraction Module

The automatic rule extraction module is used to auto-
matically extract behavioral rules of devices. The module
is divided into two submodules: 1) interactive rule extrac-
tion module and 2) communication rule extraction module.
The interactive rule extraction module first uses crawling
to obtain basic information of the current device from UI
provided by SmartThings and IFTTT platform. Then, NLP
tools are used to extract device interaction behavior rules
from device information, SmartApps description, and IFTTT
Applets rules description. The communication behavior rule
extraction module obtains basic and hidden characteristics of
device communication by analyzing network communication
packets to extract device communication behavior rules.

B. DUD Generation Module

This module is used to generate expected DURs as a white
list of device behavior. It can obtain the device behavioral

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

930 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

Fig. 2. Node structure of DUD.

rules from the automatic rule extraction module consisting of
the interaction rule extraction module and communication rule
extraction. Then, the DUD generation module translates the
extracted information to the formulated DURs. The rules are
specified by a YANG tree.

C. Behavior Detection Engine

By capturing device communication traffic on a router and
using SmartThings API, we analyze the communication pack-
ets to obtain real-time behaviors of devices. Based on the
Drools [29] rule engine, the behavior detection engine com-
pares the real-time device behaviors with DURs to detect
suspicious behaviors and performs automatic action, such as
alarming or logging.

V. DEVICE USAGE DESCRIPTION

MUD is a draft standard for defining behaviors of IoT
devices. However, it only includes some simple network access
rules specified by device manufacturers, resulting in that MUD
can only define very limited device communication behaviors.
To solve the limitations of MUD, we propose a DUD model
and define the whole system behavior rules of IoT devices. In
IoT-Praetor, any undefined behaviors in the DUD file are not
allowed. Just like the MUD file, DUD is based on YANG, and
Fig. 2 shows the important node structure.

DUD includes the following elements.

A. ID

Each IoT device has a DUR file generated according to
DUD to specify its behavior rules. The device ID is a unique
identifier of each device in IoT-Praetor and indicates the
correspondence between a device and a DUR file.

B. Name

The name field is usually a complex string generated by
a combination of numbers and letters, indicating the device
name corresponding to the DUR file.

C. Rules

Rules represent device behaviors, including Fr-device, to-
device, two-way device, and interaction device. Fr-device and
to-device represent incoming and outgoing device communica-
tion behavior rules, which are network access rules and specify

Fig. 3. YANG tree structure of DUD.

the basic characteristics of the communication packets, such
as communication direction, IP, protocol, port, etc. A two-
way device includes hidden characteristics of communication
packets, which are depicted in Section VI-B for details. An
interaction device is used to represent the interaction behav-
ior rules, which mainly include the “trigger and action” rules
extracted from smart applications.

The YANG tree is a simple graphical representation of
the data model that can be automatically generated by the
Pyang tool. Through the tree structure, node information in
the YANG file is displayed more simply and clearly. Fig. 3
shows the simple DUD YANG tree structure.

Based on DUD, we use device ID as a key value to generate
a YANG-based JSON file for each device as the DUR. Each
rule file does not affect each other and works independently,
which improves the performance and security of the system
to a certain extent.

VI. AUTOMATIC EXTRACTION OF DEVICE

BEHAVIOR RULES

A. Automatic Extraction of Interaction Rule

In an IoT system, smart applications can specify the
interactive behaviors of IoT devices by setting trigger–action
rules to realize IoT automation. For example, SmartThings
provides SmartApps to control IoT hardware devices. In
addition, the IFTTT platform can be authorized to access
API and set the corresponding IFTTT rules to control
SmartThings devices. Based on the observations, we extract
device interaction behavior rules from the following three
aspects.

1) Device Information: In the SmartThings platform,
SmartThings API is provided, which allows authorized

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: IoT-PRAETOR: UNDESIRED BEHAVIORS DETECTION FOR IoT DEVICES 931

TABLE I
DEVICE INTERACTIVE RULES

Fig. 4. JSON information of Smart Light.

users to quickly and easily obtain information about IoT
devices.

2) SmartApps: SmartApps include a description field that
uses natural language to interpret the functionality of
current SmartApp.

3) IFTTT Rules: IFTTT rules can define the interaction
rules to control the device through third-party platforms.

As shown in Table I, the extracted device interaction rules
include several key elements: trigger, action, device, and
capability.

1) Extracting Rules From SmartApps: The description field
of SmartApp includes the function definition of IoT devices.
However, the information is relatively brief. Hence, it is
difficult to extract the rules directly and the accuracy is
low. Therefore, we combine the information provided by
SmartThings API and UI, and then extract SmartApp rules
to improve the accuracy of rule extraction. The SmartApp
extraction process is divided into the following two steps.

SmartThings provides users with a UI as SmartThings IDE
(https://graph.api.smartthings.com/), which can configure and
view current system information, such as location, hub, device,
Device Handler, and installed SmartApp. Taking Smart Light
as an example, we crawled the main information from UI and
converted it to a JSON format information as shown in Fig. 4.

The description contained in the settings field indicates
device information. For example, the type field describes the
capability used by SmartApp and the value field specifies

Fig. 5. SRL Tree (turn light on when motion is detected).

the device ID and name. As shown in Fig. 4, the capability
of the trigger device involved in Smart Light is capabil-
ity.motionSensor of Motion Sensor, and the capability of
action device is capability.switch of Hue color lamp 1. The
event subscription field indicates trigger information, including
trigger condition, handler, and device. Similarly, the trig-
ger device in Smart Light is Motion Sensor and the trigger
condition is motion.active.

Through the above step, we successfully obtain a trigger
and action device and its capability. Then, we can get all the
possible commands from the Samsung capability document,
such as Switch has on () and off (), as the command candidate
set of the action device. This successfully narrowed the scope
of the device, and then we used the NLP technology to analyze
the SmartApp text description.

First, we use semantic role labeling (SRL) to analyze the
SmartApp description. SRL is a shallow semantic analysis
technique that assigns labels for words or phrases in sentences
to express their relationship with predicates. An SRL classifies
them into specific roles, such as core semantics and ancillary
semantic roles.

After each sentence is analyzed, it generates a file in
JSON format, which is represented as an SRL tree structure.
For example, given the sentence, turn on light when motion
detected, SRL analyzes and yields an SRL tree structure as
shown in Fig. 5.

Two ARG_1 light and motion in the SRL tree represent
the objects of capability. The two VERBs usually represent
attributes or commands. We use AllenNLP [30] to achieve
deep SRL processing. Then, by using the Word2Vec [31]
model to analyze the similarity of words to determine the
relationship between sentence words and related devices,
we obtain which ARG_1 is the object of the capability of
action device and which VERB is the command of capability.
Similarly, Word2Vec is used to analyze the correlation between
VERB and command candidate set of action devices so as
to analyze the commands used by SmartApps. Because the
words in SmartThings usually have special meaning, we use
Samsung SmartThings capability documentation as a corpus
for training.

2) IFTTT Rules Extraction: IFTTT can access SmartThings
services and define Applets based on the “If this, then that”
form. As shown in Fig. 6, on the IFTTT Web interface, we
can view and configure Applets set in the current system,
including version ID, description, devices, and capability of

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

932 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

Fig. 6. Configuration interface of an IFTTT Applet.

the Applets. Therefore, we can crawl the Applet’s information
from IFTTT UI.

The IFTTT platform provides 16 triggers and 6 actions
of SmartThings. By comparing with the Samsung capability
document, we associate the SmartThings service provided by
each IFTTT with the capability of the device. In this way, the
capability of the device can be obtained directly through the
services provided by the IFTTT platform.

The Applet description information generally follows “If
this, then that” paradigm, such as “If any new motion detected
by Motion Sensor, then Switch on Hue color lamp 1.” If
a statement must contain a trigger, then the statement must
contain action and a clear device name and capability. In
the previous step, we get a device list, trigger, and action in
Applets. Then, we analyze the If and Then statements sepa-
rately and obtain the device name and a specific trigger and
action phrase in the sentence. Therefore, comparing the ele-
ments of the sentence with the device list, we can obtain the
device name, trigger, and action. The file in the JSON format
generated by analyzing Applets is shown in Fig. 7.

Through the above step, we obtain commands or attributes
corresponding to SmartThings services and devices provided
by IFTTT applets so that the device interactive behavior rules
of DUD are generated.

Fig. 7. JSON information of the IFTTT Applet.

B. Automatic Extraction of Communication Rules

Except for the interactive actions from SmartApps and
IFTTT applets which can control IoT devices and result in the
undesired behaviors, network communication also may cause
IoT devices to execute malicious behaviors.

Since IoT devices are generally designed with special pur-
pose and have a small number of predictable traffic flows,
their network communication behaviors are relatively sim-
ple and stable. By analyzing the real communication of
IoT devices, we observe that they have the following main
features: 1) destination IP address in the communication
process is within a certain range; 2) the communication pro-
tocol and service type are relatively fixed; 3) the transmitted
data content is relatively stable; and 4) the transmission
frequency of communication packets has a certain regular-
ity. Therefore, we capture communication packets of IoT
devices in the router and analyze the communication behavior
of packet header, such as IP, port, protocol, communication
frequency, etc.

1) Data Set: The device communication traffic analyzed in
this section comes from two parts.

1) A small IoT system built by ourselves, including three
Samsung devices (Smart Hub, Motion Sensor, and
Outlet), three cameras (Arlo Camera, Yi Camera, and
Woshida Camera), and a Philips Hue Light. These
devices are connected to the network through a router
that has installed an OpenWrt system and contained
tcpdump for capturing device traffic.

2) Due to the limited IoT devices, we have extended our
research work using a public data set provided by
Sivanathan et al. [32]. They build a smart environment
with more than 28 different IoT devices including sen-
sors, switches, lights, medical devices, cameras, and
hubs. Beginning on September 23, 2016, the network
traffic of devices were collected daily and published on
the Internet. The size of the daily logs varies between
61 and 2 GB, with an average of 365 MB.

2) Basic Features: We first analyze the following basic
features of IoT device traffic for extracting communication
behavior rules.

1) Communication Direction (From/To Device): Normally,
the information exchange of the IoT device is bal-
anced when the device communicates with the cloud
server. In the case of attack, such as DDoS, the device
only sends packets without receiving reply packets.
Hence, we should analyze communication behaviors
from different directions, such as from device and to
device.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: IoT-PRAETOR: UNDESIRED BEHAVIORS DETECTION FOR IoT DEVICES 933

TABLE II
IP AND PORT INFORMATION OF DEVICES

2) Destination IP Address: An important feature of the
IoT device communication traffic is that the destina-
tion IP address set is usually fixed. Different from
PC, which can communicate with a variety of network
servers using different protocols, IoT devices only need
to communicate with some specific servers. Therefore,
the destination IP addresses rarely change.

3) Port: IoT devices only need to communicate with spe-
cific servers designed by the manufacturer to interact
with specific ports. Moreover, in order to prevent secu-
rity attacks such as a remote attack, devices usually close
most of the ports. Therefore, ports used in the communi-
cation process of the IoT device are basically fixed and
are not change at will. The attack traffic launched by
malicious attackers usually uses diverse ports. Table II
shows examples of IP and port information for eight
IoT devices. It can be seen that the IP address used in
the communication of the IoT device is usually within
a certain range, and the ports are fixed.

4) Protocol: Because the IoT device service is relatively
simple, protocols used in communication are rela-
tively fixed. For example, it updates and downloads
the firmware via HTTP; uses NTP to implement time
synchronization and uses DNS to query server domain
name. DNS is one of the most popular protocols for IoT
devices. To distinguish different functions, the device
communicates with servers using a different domain
name that is resolved through DNS. The device per-
forms DNS resolution only on a limited number of
domain names (mainly vendor or server domain names).
Malicious attackers can resolve any domain name arbi-
trarily, and there may be more than 300 domain names
queried in a few hours. Table III shows the information
of domain names used in the communication of six

TABLE III
DOMAIN INFORMATION OF DEVICES

devices. It can be seen that the number of domain names
used by these IoT devices is very limited. In addition,
devices use HTTP to update firmware and time synchro-
nization. An HTTP request mainly includes requested
methods, such as GET/HEAD/POST and requested
URL, which is definite for completing a specific service.

3) Hidden Features: In addition to the above basic features,
we have found that the network traffic of IoT devices has the
following hidden features.

1) Time Interval of Packets: In order to complete specific
services, IoT devices need to send packets within a
fixed-time interval. For example, Yi Camera uses UDP
protocol to maintain the heartbeat connection with the
cloud server at a time interval of 25 s. Amazon Echo,
Samsung SmartThings, and Belkin Wemo motion sen-
sors send DNS requests every 5, 10, and 30 min [33] to
query DNS with a fixed frequency. SmartThings, LiFX
bulb, and Amazon Echo send NTP requests every 600,
300, and 50 s for time synchronization. However, mali-
cious attackers usually send packets with a shorter and
unstable time interval.

2) Number of Packets: IoT devices have requirements for
traffic stability, and there is a limitation on the surged
traffic of normal devices. But for attack traffic such as
DDoS, the attackers hope to spend the minimum cost
and establish as many network connections as possible
in the shortest time to achieve the purpose of exhausting
target server resources quickly. Hence, the number of
packets over a period of time increases sharply compared

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

934 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

Fig. 8. Number of packets sent in 10 s.

TABLE IV
PACKET CHARACTERISTICS USED BY PACKET SEQUENCE

with normal traffic. Fig. 8 shows the number of packets
sent within 10 s of IoT devices, such as Smart Hub
and Yi Camera. It can be clearly seen that among the
five IoT devices, Yi Camera sends the largest number
of packets within 10 s. However, in order to achieve the
maximum attack effect in Mirai DDoS, the number of
packets sent by Yi Camera and other devices in 10 s is
as high as 20 000.

3) Packets Sequence: Packets of IoT devices generally fol-
low certain sequence characteristics. For example, TCP
flags should be SYN, SYN+ACK, ACK, PUSH, and
FIN. However, the attack traffic does not follow the
above sequence. SYN Flood only sends a large num-
ber of SYN packets to exhaust target server resources.
In order to extract the feature of packets sequence, the
device communication packets captured on the router
are grouped into pkt1, pkt2, . . . Then, we extract packet
header information, including direction, port, protocol,
packet size, connection flag, and time from the packets.
According to this information, each packet pkti is rep-
resented by a symbol as si that represents a seven-tuple
(c1, c2, c3, c4, c5, c6, c7), as detailed in Table IV. Then,
we calculate the probability pi of each packet symbol si

under the given sequence of k preceding symbols si−k,
si−k+1, . . . , si−1

pi = P(si|<si−k, si−k+1, . . . , si−1>).

Here, gated recurrent unit (GRU) [34] is used to estimate
the probability of the next packet based on k previous
packets symbols by inputting a pretrained model. GRU
is a new type of RNN that provides similar accuracy to

other RNN with a lower computational cost. By ana-
lyzing normal packet probability, we set a detection
threshold β. If pi < β, it is expressed as attack traffic
and identified as malicious communication behavior of
the device. In addition, when reading packets, it is nec-
essary to record the number of packets sent by the device
per minute and time interval of packets, then write them
into the DUR file. Thereby, the communication behavior
rule will be automatically extracted.

VII. MALICIOUS BEHAVIOR DETECTION

A. Monitoring IoT Device Behaviors

As we know, the Samsung SmartThings platform is a closed
source, and we can only write SmartApp and Device Handler
through IDE provided by SmartThings or use SmartThings
API to obtain and configure basic information. The commu-
nication packets of devices are encrypted using sophisticated
encryption algorithms and are extremely difficult to capture
device behaviors through password cracking. Therefore, we
monitor interactive behavior through SmartThings API and
obtain communication behaviors by analyzing packets’ header
information in the router.

1) Monitoring Device Interactive Behaviors: The device
information about location, device, Apps, and installedApps
can be obtained through the SmartThings API. All the
SmartThings resources are protected by OAuth2 bearer tokens
and need to specify the scope of OAuth2 to grant user’s
permission. We get the states of devices in real time by
using SmartThings API, then call the observable class of
java.util toolkit and observer device interfaces to monitor
device behaviors.

2) Monitoring Device Communication Behaviors: For the
communication behavior of devices, we obtain real-time
behavior of devices in real time by monitoring and analyz-
ing the communication packets between devices and cloud
servers in the router. The analysis process includes basic and
hidden communication features about the device proposed in
Section VI, such as destination IP address, port, and packets
sequence. Then, communication behavior rules are generated
automatically and written to device DUR file as a white list
of communication behaviors.

We capture and analyze packets by calling pcap4j [52],
which is a Java library for capturing, making, and sending
packets. Pcap4j supports multiple protocol types and can add
new protocol support without modifying the contents of the
library itself. All of its built-in packet classes are serializable
and thread safe. It can also dump and read files in the PCAP
format.

B. Detection Engine

Rule detection engine detects whether the real-time behav-
iors of a device are consistent with the rules in DUR file,
and then performs the corresponding operation, such as alert
and logging. The detection engine of IoT-Praetor is based on
Drools. Drools is an open-source rules engine written in Java.
Drools is implemented based on the RETE pattern matching
algorithm [35]. Its rule files are suffixed with “.drl” and are

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: IoT-PRAETOR: UNDESIRED BEHAVIORS DETECTION FOR IoT DEVICES 935

Fig. 9. Basic elements of Drools rules.

Fig. 10. Architecture of Drools-based detection engine.

written in the native language. The basic elements of each rule
are shown in Fig. 9.

Each rule needs to use “name” as a unique identifier, which
mainly includes three parts. Attributes are optional lists that
may affect rules such as priority. The left-hand side (LHS)
refers to a specific set of conditions, which can be composed
of zero or more conditions. When LHS is empty, the system
will return “true” for it. Multiple or different LHSs can be con-
nected with “and” or “or.” The right-hand side (RHS) refers
to an operation that needs to be specified when all the condi-
tions of LHS are met. It should be atomic and does not contain
conditional code.

Fig. 10 shows the architecture of our detection engine.
In Sections VI-A and VI-B, by analyzing device interactive
behavior and communication behavior, DUD-based DURs are
generated for the current devices of the system. We convert
DUR into Drools standard rule and monitor real behaviors
as input to our detection engine. Once a suspicious behavior
is detected, the corresponding actions are performed, such as
alarming or logging.

VIII. IMPLEMENTATION AND EVALUATION

A. Implementation

Our system is implemented based on Samsung SmartThings,
which includes Smart Hub, SmartThings Motion Sensor,
SmartThings Outlet, Philips Hue Light Suite, Arlo HD Smart
Wireless Camera Kit, Yi 720P Camera and a Woshida Camer,
and mobile phone with SmartThings Mobile App. All the
devices are connected to the network through a Xiaomi
wireless router (installing OpenWrt system), and the device
IP address is assigned by DHCP in the network range of
192.168.1.0/24. The network configuration of the device is
shown in Table V.

We evaluate the performance of our system using a phys-
ical machine with an Intel i7-6700 processor, 8-GB memory,
and a 500-GB hard disk. The machine runs Ubuntu 14.04. We
use Drools 6.3 development environment that is installed under

TABLE V
HARDWARE DEVICE CONFIGURATION

TABLE VI
ACCURACY OF INTERACTION RULE EXTRACTION

MyEclipse10. NLP tools, Word2Vec, and neural network algo-
rithm GRU used in the system are selected to install the
corresponding libraries AllenNLP, gensim, and keras under
Python 3.6.7.

B. Evaluation

IoT-Praetor is an undesired behavior detection system for
IoT devices. It can work in a household setting or an enterprise
setting. When we evaluate the performance of IoT-Praetor,
we can deploy it in a smart home environment based on
Samsung’s SmartThings platform.

1) Effectiveness of Rule Extraction: The device rule extrac-
tion testing is divided into three parts: 1) SmartApp rules
extraction; 2) IFTTT rules extraction; and 3) communication
rules extraction.

1) SmartApp Rules Extraction: In order to evaluate the
effectiveness of the SmartApp rules extraction method
proposed in this article, we selected 50 SmartApps from
SmartThings Public GitHub repository [36] for testing.
Because hardware devices in this lab environment are
limited, we created a virtual device corresponding to
SmartApp using Device Handler in SmartThings Public
GitHub repository. In 50 open-source SmartApps, we
can correctly extract 45 (90%). Three of them cannot
correctly be extracted because the description field is
not detailed enough, there is no way to extract the capa-
bility involved in device correctly. The remaining two
are Word2Vec errors in the judgment of similar words.

2) IFTTT Rules Extraction: Extracting IFTTT Applet needs
to load them into the system. Otherwise, the list of
devices involved in Applets cannot be obtained correctly.
Some of the Applets about SmartThings are only related
to one capability of the device, which does not involve
interactive behaviors. Hence, we select 30 Applets
related to our lab environment on IFTTT, then analyze
and automatically extract the device interactive behav-
iors, and successfully extract all 30 IFTTT Applets.
Table VI shows the accuracy of device interactive rule
extraction.

3) Communication Rules Extraction: In order to test the
effectiveness of communication rules extraction by ana-
lyzing device communication traffic, we test PCAP files
generated by eight IoT devices and extracted the traffic

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

936 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

TABLE VII
COMMUNICATION RULE

TABLE VIII
TESTING OF INTERACTION RULES

rules. Other data come from device data set provided
by Sivanathan et al. [32]. Table VII shows commu-
nication rules information generated by each device,
including the number of basic feature rules and three
hidden feature rules.

2) Interactive Behavior Detection: Fernandes et al. [25]
summarized several security vulnerabilities in the design of
the capability model and the event system of SmartThings,
which may cause SmartApps to perform malicious behaviors
resulting in security issues in the IoT system. It includes the
following two aspects.

1) Over-Privileged Accesses: SmartThings have a coarse-
grained capability model for SmartApps. A SmartApp
that only needs an attribute or command can access the
entire capability so that the SmartApp that is authorized
to access the capability of a device can access all capa-
bility of this device. Therefore, a malicious SmartApp
only requires access to some of the permissions, and it
is also possible to access and control the entire device.

2) Event Spoofing: Each device connected to a hub is
assigned a 128-b device identifier. Once a SmartApp
obtains the identifier, it can spoof all events of the
device without accessing any capability and pass it to
all SmartApps who subscribe to related capability.

There is no public malware data set about SmartApp on
the SmartThings. In order to test interactive rules and exclude
SmartApps with inaccurate description, we customized 20
SmartApps, including five SmartApps with over-privileged
accesses, five SmartApps with event spoof, and ten normal
SmartApps. We used ten misbehaving IFTTT Applets. The
interactive behavior test results are shown in Table VIII.

During the testing, we manually triggered each malicious
SmartApp 20 times, in which the detection rate is represented
the number of malicious behaviors/total malicious behavior.
The result of over-privileged accesses is 96%. For example,
SmartApp named “Smart Light” who has excessive privileged
behavior for accessing off() command can be successfully
detected. The detection rate of the event spoof is 93%. The
false-positive rate of interactive behavior detection is 1.6%.
The main factor affecting the detection rate is a time off-
set existing during monitoring device behaviors, which leads

Fig. 11. Simulated lab environment.

to imprecisely detect the triggering operation relationship
between devices behaviors.

3) Communication Behavior Detection: We verify the func-
tionality of device communication behavior rules by sim-
ulating Mirai Botnet attacks because Mirai is open-source
available and is the basis for other main types of IoT mali-
cious software. Our attack data set was collected from three
devices. The simulated experimental environment is shown in
Fig. 11.

We created the CNC server, Report&Loader server, and
infected bots by creating three virtual machines in VMware.
The IP address of the CNC server is 192.168.1.203. The
administrator sends attack commands to bots by control-
ling the CNC server. The IP of Report&Loader server is
192.168.1.183, which is used to receive the crack result
and download malicious programs to the attack device. The
IPs of Bot devices are 192.168.1.110, 192.168.1.173, and
192.168.1.191, which receive attack commands from the CNC
server and launch DDoS attack. The IP of the behavior detec-
tion system is 192.168.1.243, running our detection system,
analyzing the device traffic, and determining whether device
behavior is legal.

We tested three vulnerable devices by launching a Mirai
attack. As we can see from Section VI-B, the maximum num-
ber of packets sent by IoT devices per 10 s is limited. For
example, the maximum number of packets for Arlo Camera
is 841/10 s. Hence, we set up a w = 1000 packet window.
According to the types of packets, we divide Mirai into four
different stages. Before infection, bots brutely crack infected
devices with username and password dictionary. Once suc-
cessfully cracked, the loader remotely logs in the device and
determines the device environment. After infection, the loader
uses wget, tftp, and echo methods to download the Mirai
malicious program to an infected device. During the scan-
ning phase, the infected device initiates a scanning crack to
find other vulnerable devices in the network. In the DDoS
attack phase, the infected device receives a command from
the CNC server and sends ten different types of attacks to the
target server. This document selects five attack modes: 1) UDP
Flood; 2) SYN Flood; 3) ACK Flood; 4) DNS resolver Flood;
and 5) Http Flood. Table IX shows the results of malicious
communication behavior detection.

Before infection, we repeatedly infected each vulnerable
device 20 times, each time generating about 2000 attack pack-
ets that are mainly Telnet packets. The detection rate was

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: IoT-PRAETOR: UNDESIRED BEHAVIORS DETECTION FOR IoT DEVICES 937

TABLE IX
TESTING OF COMMUNICATION RULES

100% because 53 ports were not allowed in the rules file.
After infection, wget was used in this experiment, and each
infection-prone device was repeatedly infected 20 times, each
time generating about 700 attack packets, which are mainly
TCP, Http, and Telnet packets. In the scanning phase, we
set each device to perform scanning for 3 min, generating
more than 100 000 packets per device. During the DDoS attack
phase, each attack lasts for 3 min while each device generates
10 million attack packets.

In the process of communication behavior detection, the
attack detection rate is over 98% and the false positive rate
is zero. These results show that IoT-Praetor does not intro-
duce false alarms. To extract the feature of packets sequence,
IoT-Praetor uses the GRU model to estimate the probability
of the next packet based on k previous packet symbols by
inputting a pretrained model. To determine appropriate values
for the detection threshold and anomaly triggering threshold,
we evaluated the system accuracy using the normal data set
and the attack data set. There are two reasons why a few pack-
ets are not detected correctly: 1) the detection threshold in the
GRU model may have a slight deviation and 2) the automatic
rule extraction module cannot perfectly obtain the normal and
abnormal communication rules of all packets.

C. Performance

To evaluate additional overhead generated by the behavior
detection system, we test the performance from the following
aspects: 1) preprocessing performance includes the time for
automatic extraction and generation of rules and 2) system
running performance.

1) Preprocessing Performance: The preprocessing
performance evaluation includes the rules extraction time for
SmartApps, IFTTT Applets, and communication traffic.

1) SmartApp Rules Extraction: To test the performance
of extracting device interaction behavior rules from
SmartApps, we calculated the time of 50 open-source
SmartApps and tested ten times per SmartApp. Thus,
the average time of SmartApp extraction is 7 s.

2) IFTTT Rules Extraction: In order to test the time of
IFTTT Applets extraction, we also performed ten times
automatic extractions on 30 IFTTT Applets, resulting in
the average time overhead of 363 ms.

3) Communication Behavior Rule Extraction: We capture
device traffic in a trusted environment for 15 min.
During this time, we repeatedly perform various opera-
tions to the devices on mobile apps. Then, the normal
communication traffic of the devices is taken as an input
and a DUD-based device communication behavior rule
is generated. In this process, the time of communication
behavior rule generation is about 2520 ms.

Fig. 12. Time cost of device interaction rule detection.

The time of preprocessing device behavior rules is mainly
to obtain trusted device communication behaviors and cap-
ture the network communication traffic, but the preprocessing
operation of rule generation is a one-time cost and can be com-
pleted in the initial stage of the system. So the performance
overhead is acceptable.

2) System Performance: To evaluate the system run-time
performance, we extracted 30 “trigger–actions” rules from
SmartApps and Applets to generate DURs. Then, our system
detects whether interactive behaviors violate the DUR white
list by monitoring the changes of device states. Because
interactive rules of devices can be deleted, modified, and added
according to the needs of users, the rules may change in quan-
tity over time. Therefore, we tested the behavior detection time
by setting a different number of interactive rules. As shown
in Fig. 12, when the number of rules increases, the system
running time also increases.

We import traffic to the local host through port mirroring in
the router, classify the traffic according to the MAC addresses
of the devices, and start multithread to detect the commu-
nication behavior of different devices. The average time of
detection for each packet is approximately 124 ms. The time
consumption is mainly caused by monitoring and analyzing the
communication packets between devices and cloud servers in
the router, including capturing the real-time packets, extracting
the basic and hidden communication behaviors of devices, and
comparing the real-time communication behaviors of devices
with DUD communication rules. Due to the large number and
complexity of Drools rules, the DUR translation and matching
process introduces a lot of performance overhead. The com-
munication behavior rule is generated based on a large amount
of communication traffic in a trusted environment. Generally,
the rule is basically fixed and will not change excessively with
time.

D. System Security Analysis

DURs include the information of communication behavior
and interactive behavior rules, which is the security baseline
for ensuring device security in our system. Its security is very
important and must ensure that the file cannot be tampered
with. An effective solution is provided in MUD to guarantee

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

938 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

the security of the rule file, which we can draw on for DUD.
Singing the DUD file by using the CMS message encryption
algorithm (cryptographic message syntax), and stored in the
designated location and transmitted using “application/pkcs7-
signature” content type. In addition, the validity time of the
rule file signature must be set. Once it expires, we need to
resign the file. Before using a DUR file, the system must
retrieve the signed value and verify the signature.

The key to detecting device interactive behavior is whether
the rules contained in the DUR file are correct. In our system,
SmartApps and IFTTT Applets are often signed and accessed
by the administrator through OAuth2 protocol authentication.
In addition, the process of automatic extraction of rules is a
one-time effort and can be completed offline.

The automatic extraction of communication behavior rules
is implemented by capturing device traffic in a clean envi-
ronment where the device connects the network. Meanwhile,
device communication behavior has strong stability. Under
normal circumstances, it will not change too frequently.
Therefore, it is secure that we extracted communication behav-
ior rules at the beginning of the device joining the network.

Once malicious behaviors have been detected, the fol-
lowing actions can be taken. First, the detection engine
can block malicious behaviors in the smart hub. Then, the
violation information can be written to the system log of
the smart hub or sent to device administrator for further
analysis.

IX. DISCUSSION

IoT-Praetor is a DUD-based behavior detection system
for IoT devices. It is designed and implemented based on
Samsung’s SmartThings platform. Although our approaches
can be applied to other IoT platforms, it still needs some
efforts to modify the system design and implementation mod-
ules according to the features of each platform. In the future,
we plan to extend our approaches to support more platforms.

The evaluation results show that IoT-Praetor can effectively
detect malicious behaviors of IoT devices and cause small
performance overhead. However, due to the very high real-
time requirements for IoT devices, the delay time still needs to
be reduced. Therefore, the efficiency of the behavior detection
engine and the performance overhead of the system should be
further improved.

Finally, the extraction of device communication behavior
rules is based on the assumption that device communication
traffic is captured in a clean environment when devices first
join networks at an initial stage. Although the device com-
munication usually does not change too much in an entire
life cycle, the device update sometimes may change the corre-
sponding network communication rules, such as IP addresses
of cloud servers. Hence, how to capture the update and suc-
cessfully reinstall DUR rules when the communication rules
in the DUR need to be updated, should be considered in the
future work.

X. RELATED WORK

In recent years, with the booming of IoT, its security
issue [37]–[40] has become one of the hot topics in academic

and industrial research. Antonakakis et al. [41] analyzed the
principle, propagation model, and attack mode of malicious
code Mirai, which is a kind of DDoS attack on IoT devices.
Cao et al. [42] analyzed the attack mode and attack process of
Mirai in detail. They designed and implanted “white” Mirai
in IoT devices, expelled vulnerable ports occupied by other
malicious Mirai, and maintained heartbeat connection with
manufacturers to achieve a secure Mirai defense system.
Costin et al. [43], [44] performed static and dynamic security
analysis on a large number of IoT firmware and highlighted
several important security challenges in future research.

In addition, there are many works focusing on the secu-
rity of SmartApps. Fernandes et al. [25] used Samsung
SmartThings as an example to conduct an in-depth security
analysis of a smart home platform and discovered secu-
rity issues such as excessive privileges. By exploiting this
vulnerability, pincode of door lock can be leaked through
malicious monitoring battery SmartApp, causing serious secu-
rity hazards. Then, Fernandes et al. continued to propose
FlowFence [18], by using the information flow tracking
technology in IoT, users who obtain rights can use data
safely and legally. SmartAuth [17] proposes a user-centric,
semantic-based intelligent authorization system. It collects
security-related information from IoT App descriptions, code
and comments automatically, and generate user authorization
interfaces to enhance the generation of existing platform secu-
rity policies. IoTMon [45] discovers the possible physical
interactions across IoT applications and assesses the safety risk
of each discovered interapp interaction. IoTGuard [46] collects
an app’s information at runtime using a code instrumenter that
adds extra logic to the app’s source code and checks behavior
violations by comparing it with predefined policies. However,
the policies in IoTGuard are defined and labeled manually. In
addition, IoTGuard only considers the behaviors of apps and
does not consider the communication behavior of IoT devices.
HoMonit [16] monitors SmartApps from encrypted wireless
traffic by comparing the SmartApps activities inferred from
the encrypted traffic with their expected behaviors dictated in
their source code or UI interfaces. However, Homonit needs
the specific hardware-based wireless sniffers to monitor the
encrypted wireless traffic so as to infer the state transition of
IoT device behaviors.

Comparing the previous work, our work proposes a
new DUD model for building IoT device behavior secu-
rity specifications, which comprehensively considers the
device interactive behaviors and communication behaviors.
Furthermore, we present the behavior extraction method for
SmartApps, IFTTT applets, and communication traffic. In
addition, we design and implement a behavioral monitoring
system based on Drools and a detection engine.

XI. CONCLUSION

In this article, we proposed IoT-Praetor, a DUD-based
behavior detection system for IoT devices. Aiming to spec-
ify the fine-grained behaviors of the whole system over
the entire lifecycle for IoT devices, we presented a new
DUD model, which can define the interaction behavior rules

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: IoT-PRAETOR: UNDESIRED BEHAVIORS DETECTION FOR IoT DEVICES 939

and communication behavior rules of devices. Moreover, we
proposed automatic extraction approaches based on crawl-
ing and NLP to automatically extract and generate DURs as
a white list. By monitoring device behaviors in real time,
we designed a device behavior detection engine based on
Drools. Finally, we implemented and evaluated our system
on the Samsung SmartThings platform. Our evaluation results
showed that IoT-Praetor can effectively detect the malicious
behaviors of IoT devices and cause small performance over-
head.

REFERENCES

[1] Wink: A Simpler, Smarter Home, Wink, New York, NY, USA, 2018.
[Online]. Available: https://www.wink.com/

[2] SmartThings, SmartThings, Mountain View CA, USA, 2017. [Online].
Available: https://www.smartthings.com/

[3] HomeKit, Apple HomeKit, Cupertino, CA, USA, 2018. [Online].
Available: https://developer.apple.com/homekit/

[4] AWS IoT Documentation, AWS Serv., Seattle, WA, USA, 2016. [Online].
Available: https://aws.amazon.com/de/documentation/iot/

[5] openHAB, openHAB, San Francisco, CA, USA, 2018. [Online].
Available: https://github.com/openhab/openhab/wiki

[6] Home Assistant, Home Assist., San Diego, CA, USA, 2018. [Online].
Available: https://www.home-assistant.io/

[7] IFTTT Documentation, IFTTT, San Francisco, CA, USA, 2016. [Online].
Available: https://ifttt.com/

[8] S. Notra, M. Siddiqi, H. H. Gharakheili, V. Sivaraman, and R. Boreli,
“An experimental study of security and privacy risks with emerging
household appliances,” in Proc. IEEE Conf. Commun. Netw. Security,
San Francisco, CA, USA, 2014, pp. 79–84.

[9] T. Oluwafemi, T. Kohno, S. Gupta, and S. Patel, “Experimental security
analyses of non-networked compact fluorescent lamps: A case study of
home automation security,” in Proc. LASER (LASER), 2013, pp. 13–24.

[10] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner,
“Smart locks: Lessons for securing commodity Internet of Things
devices,” in Proc. 11th ACM Asia Conf. Comput. Commun. Security,
2016, pp. 461–472.

[11] D. Formby, P. Srinivasan, A. Leonard, J. Rogers, and R. A. Beyah,
“Who’s in control of your control system? Device fingerprinting for
cyber-physical systems,” in Proc. Annu. Netw. Distrib. Syst. Security
Symp. (NDSS), 2016, pp. 1–15.

[12] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and Y. Zhang,
“Discovering and understanding the security hazards in the interactions
between IoT devices, mobile apps, and clouds on smart home platforms,”
in Proc. 28th USENIX Conf. Security Symp., 2019, pp. 1133–1150.

[13] Q. Wang, Y. Zhang, X. Lu, Z. Wang, Z. Qin, and K. Ren, “Real-time and
spatio-temporal crowd-sourced social network data publishing with dif-
ferential privacy,” IEEE Trans. Depend. Secure Comput., vol. 15, no. 4,
pp. 591–606, Jul./Aug. 2018.

[14] Q. Zou, Y. Wang, Q. Wang, Y. Zhao, and Q. Li, “Deep
learning-based gait recognition using smartphones in the wild,” IEEE
Trans. Inf. Forensics Security, vol. 15, pp. 3197–3212, Apr. 2020,
doi: 10.1109/TIFS.2020.2985628.

[15] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[16] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu, “HoMonit:
Monitoring smart home apps from encrypted traffic,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security, 2018, pp. 1074–1088.

[17] Y. Tian et al., “SmArtauth: User-centered authorization for the Internet
of Things,” in Proc. 26th USENIX Conf. Security Symp. (USENIX
Security), 2017, pp. 361–378.

[18] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash, “FlowFence: Practical data protection for emerging IoT
application frameworks,” in Proc. 25th USENIX Conf. Security Symp.
(USENIX Security), 2016, pp. 531–548.

[19] E. Lear, R. Droms, and D. Romascanu, “Manufacturer usage descrip-
tion specification (work in progress),” Internet Eng. Task Force, Internet
Draft, 2018.

[20] M. Prospero. (2020). The Best Smart Home Hubs of 2020. [Online].
Available: https://www.tomsguide.com/us/best-smart-home-hubs,review-
3200.html

[21] Zapier: Connect Your Apps And Automate Workflows, Zapier,
San Francisco, CA, USA, 2018. [Online]. Available: https://zapier.com/

[22] Apiant: Connect Your Apps, Automate Your Business, Apiant,
Philadelphia, PA, USA, 2018. [Online]. Available: https://apiant.com/

[23] A. Hamza, H. H. Gharakheili, and V. Sivaraman, “Combining MUD
policies with SDN for IoT intrusion detection,” in Proc. Workshop IoT
Security Privacy, 2018, pp. 1–7.

[24] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin,
“Measurement and analysis of hajime, a peer-to-peer IoT botnet,” in
Proc. Netw. Distrib. Syst. Security Symp. (NDSS), 2019, pp. 1–15.

[25] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in Proc. IEEE Symp. Security Privacy (SP),
San Jose, CA, USA, 2016, pp. 636–654.

[26] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson,
“Spot me if you can: Uncovering spoken phrases in encrypted voip
conversations,” in Proc. IEEE Symp. Security Privacy (SP), Oakland,
CA, USA, 2008, pp. 35–49.

[27] Z. Zhou, W. Diao, X. Liu, and K. Zhang, “Acoustic fingerprinting revis-
ited: Generate stable device ID stealthily with inaudible sound,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Security, 2014, pp. 429–440.

[28] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu,
“DolphinAttack: Inaudible voice commands,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Security, 2017, pp. 103–117.

[29] M. Proctor, M. Neale, P. Lin, and M. Frandsen, Drools Documentation,
vol. 5, JBoss, Atlanta, GA, USA, 2008.

[30] M. Gardner et al., “AllenNLP: A deep semantic natural language
processing platform,” 2018. [Online]. Available: arxiv:1803.07640.

[31] X. Rong, “Word2Vec parameter learning explained,” 2014. [Online].
Available: arxiv:1411.2738.

[32] A. Sivanathan et al., “Characterizing and classifying IoT traffic in smart
cities and campuses,” in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), Atlanta, GA, USA, 2017, pp. 559–564.

[33] P. Hunt, “Chain grant type for oauth2,” Int. Telecommun. Union, Internet
Draft, 2012.

[34] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” 2014. [Online].
Available: arxiv:1412.3555.

[35] C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object
pattern match problem,” in Artificial Intelligence, Elsevier, 1989, pp.
547–559.

[36] Smartthings Public Github Repo, SmartThings, Mountain
View CA, USA, 2016. [Online]. Available: https://github.com/
SmartThingsCommunity/SmartThingsPublic

[37] B. Ur, J. Jung, and S. Schechter, “The current state of access control
for smart devices in homes,” in Proc. Workshop Home Usable Privacy
Security (HUPS). 2014, pp. 209–218.

[38] J. Valente and A. A. Cárdenas, “Using visual challenges to verify the
integrity of security cameras,” Challenge, vol. 1, no. 4, p. 2, 2015.

[39] The Internet of Things: Security Research Study, Veracode, Burlington,
MA, USA, 2015. [Online]. Available: https://www.veracode.com/
veracode-study-reveals-internet-things-poses-cybersecurity-risk

[40] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for
the Internet-of-Things,” in Proc. 14th ACM Workshop Hot Topics Netw.,
2015, p. 5.

[41] M. Antonakakis et al., “Understanding the mirai botnet,” in Proc. 26th
USENIX Conf. Security Symp., 2017, pp. 1093–1110.

[42] C. Cao, L. Guan, P. Liu, N. Gao, J. Lin, and J. Xiang, “Hey, you, keep
away from my device: Remotely implanting a virus expeller to defeat
mirai on IoT devices,” 2017. [Online]. Available: arxiv:1706.05779.

[43] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A
large-scale analysis of the security of embedded firmwares,” in
Proc. 23rd USENIX Conf. Security Symp. (USENIX Security), 2014,
pp. 95–110.

[44] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: A case study on embedded Web interfaces,”
in Proc. 11th ACM Asia Conf. Comput. Commun. Security, 2016,
pp. 437–448.

[45] W. Ding and H. Hu, “On the safety of IoT device physical interaction
control,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security, 2018,
pp. 832–846.

[46] Z. B. Celik, G. Tan, and P. D. McDaniel, “IoTGuard: Dynamic enforce-
ment of security and safety policy in commodity IoT,” in Proc. Netw.
Distrib. Syst. Security Symp. (NDSS), 2019, pp. 1–15.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TIFS.2020.2985628

940 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

Juan Wang (Member, IEEE) received the M.E. and
Ph.D. degrees from the School of Computer Science,
Wuhan University, Wuhan, China, in 2004 and 2008,
respectively.

She is an Associate Professor with the School of
Cyber Science and Engineering, Wuhan University.
In 2018 and January 2010, she was a Visiting
Scholar with Pennsylvania State University, State
College, PA, USA, and Arizona State University,
Tempe, AZ, USA. Her research has been supported
by NSF projects. She has authored and coauthored

over 40 papers and holds 10 patents in security areas. Her current research
interests include cloud and IoT security, trust computing, and SDN and NFV
security.

Shirong Hao received the bachelor’s degree
in information security from Wuhan University,
Wuhan, China, in 2017, where she is currently pur-
suing the master’s degree with the School of Cyber
Science and Engineering.

Her research interests include NFV, system secu-
rity, and IoT security.

Ru Wen received the bachelor’s degree in
information security from Wuhan University,
Wuhan, China, in 2016, where she is currently
pursuing the master’s degree with the School of
Cyber Science and Engineering.

Her research interests include software-defined
network, system security, and IoT security.

Boxian Zhang is currently pursuing the bache-
lor’s degree with the School of Cyber Science and
Engineering, Wuhan University, Wuhan, China.

His research interests include software security,
Internet security, and IoT security.

Liqiang Zhang received the Ph.D. degree in
information security from Wuhan University,
Wuhan, China, in 2018.

He is an Assistant Professor with Cyberspace
Science and Engineering School, Wuhan University.
His current research interests include trusted
computing, software analysis, AI security, and
system evaluation.

Hongxin Hu (Member, IEEE) received the Ph.D.
degree in computer science from Arizona State
University, Tempe, AZ, USA, in 2012.

He is an Associate Professor with the Division of
Computer Science, School of Computing, Clemson
University, Clemson, SC, USA. He has published
over 100 refereed technical papers, many of which
appeared in top conferences and journals. His cur-
rent research spans security, privacy, networking, and
systems.

Dr. Hu received the NSF CAREER Award in
2019. He was a recipient of the Best Paper Award from ACM SIGCSE 2018
and ACM CODASPY 2014 and the Best Paper Award Honorable Mention
from ACM SACMAT 2016, IEEE ICNP 2015, and ACM SACMAT 2011.

Rongxing Lu (Senior Member, IEEE) received the
Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Waterloo,
Waterloo, ON, Canada, in 2012.

He is currently an Associate Professor with the
Faculty of Computer Science (FCS), University of
New Brunswick (UNB), Fredericton, NB, Canada.
Before that, he worked as an Assistant Professor
with the School of Electrical and Electronic
Engineering, Nanyang Technological University,
Singapore, from April 2013 to August 2016. He

worked as a Postdoctoral Fellow with the University of Waterloo from May
2012 to April 2013. His research interests include applied cryptography, pri-
vacy enhancing technologies, and IoT-big data security and privacy. He has
published extensively in his areas of expertise.

Dr. Lu was a recipient of the 8 best (student) paper awards from some
reputable journals and conferences. He was awarded the most prestigious
Governor General’s Gold Medal and won the 8th IEEE Communications
Society (ComSoc) Asia–Pacific Outstanding Young Researcher Award in
2013. He is currently a Senior Member of IEEE Communications Society.
He currently serves as the Vice-Chair (Conferences) of IEEE ComSoc
Communications and Information Security Technical Committee. He is the
Winner of 2016–2017 Excellence in Teaching Award, FCS, UNB.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:57:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

